If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+9q+18=0
a = 1; b = 9; c = +18;
Δ = b2-4ac
Δ = 92-4·1·18
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3}{2*1}=\frac{-12}{2} =-6 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3}{2*1}=\frac{-6}{2} =-3 $
| 9(2n+1)=7(6n+8)+7 | | 13x-(3x-5)=95 | | -3(-2x+12)=x-11 | | -3x+6-5(x-1)=5x-(2x-4+7) | | 1/4(16x+28)-16=-3/5(40x-20) | | n/45=4/9 | | 17y+19=13 | | 2(x^2-4x)=3x^2-(x^2+4) | | 5x^2+2=102 | | 6x÷13=16 | | 2e=6.3 | | -2x+4=10-3x | | x+.02x=492 | | a4=7 | | g(2)=5(2)+1 | | 2(x2-4x)=3x2-(x2+4) | | (x-2.5)1.20=4.50 | | 5-1/5n=n+1/3 | | 27+17x=15+20x | | x+x-13+x+1=180 | | -5/3-1/2x=-1/4 | | -5x(-1)=16 | | -5(-1)+y=16 | | 2×(21+6x)=42 | | b+-7=-12 | | 34=4(y+4)-7y | | 30=3t+9 | | -3x-(3-6x)=-2 | | 2x+4(3)=-8 | | 3.60/m=10.8/8.10 | | 1.15/0.85=k/1.19 | | 2(3)+4y=-8 |